\(\int \frac {a+b \text {arccosh}(c x)}{x^4 (d-c^2 d x^2)^{5/2}} \, dx\) [133]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 338 \[ \int \frac {a+b \text {arccosh}(c x)}{x^4 \left (d-c^2 d x^2\right )^{5/2}} \, dx=-\frac {b c \sqrt {d-c^2 d x^2}}{6 d^3 x^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b c^3 \sqrt {d-c^2 d x^2}}{6 d^3 \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}-\frac {a+b \text {arccosh}(c x)}{3 d x^3 \left (d-c^2 d x^2\right )^{3/2}}-\frac {2 c^2 (a+b \text {arccosh}(c x))}{d x \left (d-c^2 d x^2\right )^{3/2}}+\frac {8 c^4 x (a+b \text {arccosh}(c x))}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {16 c^4 x (a+b \text {arccosh}(c x))}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {8 b c^3 \sqrt {d-c^2 d x^2} \log (x)}{3 d^3 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {4 b c^3 \sqrt {d-c^2 d x^2} \log \left (1-c^2 x^2\right )}{3 d^3 \sqrt {-1+c x} \sqrt {1+c x}} \]

[Out]

1/3*(-a-b*arccosh(c*x))/d/x^3/(-c^2*d*x^2+d)^(3/2)-2*c^2*(a+b*arccosh(c*x))/d/x/(-c^2*d*x^2+d)^(3/2)+8/3*c^4*x
*(a+b*arccosh(c*x))/d/(-c^2*d*x^2+d)^(3/2)+16/3*c^4*x*(a+b*arccosh(c*x))/d^2/(-c^2*d*x^2+d)^(1/2)-1/6*b*c*(-c^
2*d*x^2+d)^(1/2)/d^3/x^2/(c*x-1)^(1/2)/(c*x+1)^(1/2)-1/6*b*c^3*(-c^2*d*x^2+d)^(1/2)/d^3/(-c^2*x^2+1)/(c*x-1)^(
1/2)/(c*x+1)^(1/2)+8/3*b*c^3*ln(x)*(-c^2*d*x^2+d)^(1/2)/d^3/(c*x-1)^(1/2)/(c*x+1)^(1/2)+4/3*b*c^3*ln(-c^2*x^2+
1)*(-c^2*d*x^2+d)^(1/2)/d^3/(c*x-1)^(1/2)/(c*x+1)^(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 338, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {277, 198, 197, 5922, 12, 1813, 1634} \[ \int \frac {a+b \text {arccosh}(c x)}{x^4 \left (d-c^2 d x^2\right )^{5/2}} \, dx=-\frac {2 c^2 (a+b \text {arccosh}(c x))}{d x \left (d-c^2 d x^2\right )^{3/2}}-\frac {a+b \text {arccosh}(c x)}{3 d x^3 \left (d-c^2 d x^2\right )^{3/2}}+\frac {16 c^4 x (a+b \text {arccosh}(c x))}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {8 c^4 x (a+b \text {arccosh}(c x))}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {b c \sqrt {d-c^2 d x^2}}{6 d^3 x^2 \sqrt {c x-1} \sqrt {c x+1}}-\frac {b c^3 \sqrt {d-c^2 d x^2}}{6 d^3 \sqrt {c x-1} \sqrt {c x+1} \left (1-c^2 x^2\right )}+\frac {8 b c^3 \log (x) \sqrt {d-c^2 d x^2}}{3 d^3 \sqrt {c x-1} \sqrt {c x+1}}+\frac {4 b c^3 \sqrt {d-c^2 d x^2} \log \left (1-c^2 x^2\right )}{3 d^3 \sqrt {c x-1} \sqrt {c x+1}} \]

[In]

Int[(a + b*ArcCosh[c*x])/(x^4*(d - c^2*d*x^2)^(5/2)),x]

[Out]

-1/6*(b*c*Sqrt[d - c^2*d*x^2])/(d^3*x^2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]) - (b*c^3*Sqrt[d - c^2*d*x^2])/(6*d^3*Sqr
t[-1 + c*x]*Sqrt[1 + c*x]*(1 - c^2*x^2)) - (a + b*ArcCosh[c*x])/(3*d*x^3*(d - c^2*d*x^2)^(3/2)) - (2*c^2*(a +
b*ArcCosh[c*x]))/(d*x*(d - c^2*d*x^2)^(3/2)) + (8*c^4*x*(a + b*ArcCosh[c*x]))/(3*d*(d - c^2*d*x^2)^(3/2)) + (1
6*c^4*x*(a + b*ArcCosh[c*x]))/(3*d^2*Sqrt[d - c^2*d*x^2]) + (8*b*c^3*Sqrt[d - c^2*d*x^2]*Log[x])/(3*d^3*Sqrt[-
1 + c*x]*Sqrt[1 + c*x]) + (4*b*c^3*Sqrt[d - c^2*d*x^2]*Log[1 - c^2*x^2])/(3*d^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 197

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]

Rule 198

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p +
 1], 0] && NeQ[p, -1]

Rule 277

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^n)^(p + 1)/(a*(m + 1))), x]
 - Dist[b*((m + n*(p + 1) + 1)/(a*(m + 1))), Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]

Rule 1634

Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2]) &&
GtQ[Expon[Px, x], 2]

Rule 1813

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*SubstFor[x^2,
 Pq, x]*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x^2] && IntegerQ[(m - 1)/2]

Rule 5922

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = IntHide[x
^m*(d + e*x^2)^p, x]}, Dist[a + b*ArcCosh[c*x], u, x] - Dist[b*c*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 +
 c*x])], Int[SimplifyIntegrand[u/Sqrt[d + e*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0
] && IntegerQ[p - 1/2] && NeQ[p, -2^(-1)] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {a+b \text {arccosh}(c x)}{3 d x^3 \left (d-c^2 d x^2\right )^{3/2}}-\frac {2 c^2 (a+b \text {arccosh}(c x))}{d x \left (d-c^2 d x^2\right )^{3/2}}+\frac {8 c^4 x (a+b \text {arccosh}(c x))}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {16 c^4 x (a+b \text {arccosh}(c x))}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int \frac {-1-6 c^2 x^2+24 c^4 x^4-16 c^6 x^6}{3 d^3 x^3 \left (1-c^2 x^2\right )^2} \, dx}{\sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {a+b \text {arccosh}(c x)}{3 d x^3 \left (d-c^2 d x^2\right )^{3/2}}-\frac {2 c^2 (a+b \text {arccosh}(c x))}{d x \left (d-c^2 d x^2\right )^{3/2}}+\frac {8 c^4 x (a+b \text {arccosh}(c x))}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {16 c^4 x (a+b \text {arccosh}(c x))}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int \frac {-1-6 c^2 x^2+24 c^4 x^4-16 c^6 x^6}{x^3 \left (1-c^2 x^2\right )^2} \, dx}{3 d^3 \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {a+b \text {arccosh}(c x)}{3 d x^3 \left (d-c^2 d x^2\right )^{3/2}}-\frac {2 c^2 (a+b \text {arccosh}(c x))}{d x \left (d-c^2 d x^2\right )^{3/2}}+\frac {8 c^4 x (a+b \text {arccosh}(c x))}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {16 c^4 x (a+b \text {arccosh}(c x))}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \frac {-1-6 c^2 x+24 c^4 x^2-16 c^6 x^3}{x^2 \left (1-c^2 x\right )^2} \, dx,x,x^2\right )}{6 d^3 \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {a+b \text {arccosh}(c x)}{3 d x^3 \left (d-c^2 d x^2\right )^{3/2}}-\frac {2 c^2 (a+b \text {arccosh}(c x))}{d x \left (d-c^2 d x^2\right )^{3/2}}+\frac {8 c^4 x (a+b \text {arccosh}(c x))}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {16 c^4 x (a+b \text {arccosh}(c x))}{3 d^2 \sqrt {d-c^2 d x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \text {Subst}\left (\int \left (-\frac {1}{x^2}-\frac {8 c^2}{x}+\frac {c^4}{\left (-1+c^2 x\right )^2}-\frac {8 c^4}{-1+c^2 x}\right ) \, dx,x,x^2\right )}{6 d^3 \sqrt {-1+c x} \sqrt {1+c x}} \\ & = -\frac {b c \sqrt {d-c^2 d x^2}}{6 d^3 x^2 \sqrt {-1+c x} \sqrt {1+c x}}-\frac {b c^3 \sqrt {d-c^2 d x^2}}{6 d^3 \sqrt {-1+c x} \sqrt {1+c x} \left (1-c^2 x^2\right )}-\frac {a+b \text {arccosh}(c x)}{3 d x^3 \left (d-c^2 d x^2\right )^{3/2}}-\frac {2 c^2 (a+b \text {arccosh}(c x))}{d x \left (d-c^2 d x^2\right )^{3/2}}+\frac {8 c^4 x (a+b \text {arccosh}(c x))}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {16 c^4 x (a+b \text {arccosh}(c x))}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {8 b c^3 \sqrt {d-c^2 d x^2} \log (x)}{3 d^3 \sqrt {-1+c x} \sqrt {1+c x}}+\frac {4 b c^3 \sqrt {d-c^2 d x^2} \log \left (1-c^2 x^2\right )}{3 d^3 \sqrt {-1+c x} \sqrt {1+c x}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 237, normalized size of antiderivative = 0.70 \[ \int \frac {a+b \text {arccosh}(c x)}{x^4 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {2 a+12 a c^2 x^2-48 a c^4 x^4+32 a c^6 x^6-b c x \sqrt {-1+c x} \sqrt {1+c x}+2 b \left (1+6 c^2 x^2-24 c^4 x^4+16 c^6 x^6\right ) \text {arccosh}(c x)-16 b c^3 x^3 \sqrt {-1+c x} \sqrt {1+c x} \left (-1+c^2 x^2\right ) \log (x)+8 b c^3 x^3 \sqrt {-1+c x} \sqrt {1+c x} \log \left (1-c^2 x^2\right )-8 b c^5 x^5 \sqrt {-1+c x} \sqrt {1+c x} \log \left (1-c^2 x^2\right )}{6 d^2 x^3 \left (-1+c^2 x^2\right ) \sqrt {d-c^2 d x^2}} \]

[In]

Integrate[(a + b*ArcCosh[c*x])/(x^4*(d - c^2*d*x^2)^(5/2)),x]

[Out]

(2*a + 12*a*c^2*x^2 - 48*a*c^4*x^4 + 32*a*c^6*x^6 - b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x] + 2*b*(1 + 6*c^2*x^2 -
24*c^4*x^4 + 16*c^6*x^6)*ArcCosh[c*x] - 16*b*c^3*x^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(-1 + c^2*x^2)*Log[x] + 8*b*
c^3*x^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Log[1 - c^2*x^2] - 8*b*c^5*x^5*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*Log[1 - c^2*x
^2])/(6*d^2*x^3*(-1 + c^2*x^2)*Sqrt[d - c^2*d*x^2])

Maple [A] (verified)

Time = 1.15 (sec) , antiderivative size = 403, normalized size of antiderivative = 1.19

method result size
default \(a \left (-\frac {1}{3 d \,x^{3} \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+2 c^{2} \left (-\frac {1}{d x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+4 c^{2} \left (\frac {x}{3 d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+\frac {2 x}{3 d^{2} \sqrt {-c^{2} d \,x^{2}+d}}\right )\right )\right )-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \left (32 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}\, c^{6} x^{6}+32 \,\operatorname {arccosh}\left (c x \right ) c^{7} x^{7}-16 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{4}-1\right ) x^{7} c^{7}-48 \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) c^{4} x^{4}-64 \,\operatorname {arccosh}\left (c x \right ) c^{5} x^{5}+32 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{4}-1\right ) x^{5} c^{5}+12 \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, c^{2} x^{2}+32 c^{3} x^{3} \operatorname {arccosh}\left (c x \right )-16 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{4}-1\right ) x^{3} c^{3}-c^{3} x^{3}+2 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}+c x \right )}{6 d^{3} \left (c^{6} x^{6}-3 c^{4} x^{4}+3 c^{2} x^{2}-1\right ) x^{3}}\) \(403\)
parts \(a \left (-\frac {1}{3 d \,x^{3} \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+2 c^{2} \left (-\frac {1}{d x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+4 c^{2} \left (\frac {x}{3 d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+\frac {2 x}{3 d^{2} \sqrt {-c^{2} d \,x^{2}+d}}\right )\right )\right )-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \left (32 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}\, c^{6} x^{6}+32 \,\operatorname {arccosh}\left (c x \right ) c^{7} x^{7}-16 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{4}-1\right ) x^{7} c^{7}-48 \sqrt {c x -1}\, \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) c^{4} x^{4}-64 \,\operatorname {arccosh}\left (c x \right ) c^{5} x^{5}+32 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{4}-1\right ) x^{5} c^{5}+12 \sqrt {c x +1}\, \operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, c^{2} x^{2}+32 c^{3} x^{3} \operatorname {arccosh}\left (c x \right )-16 \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{4}-1\right ) x^{3} c^{3}-c^{3} x^{3}+2 \,\operatorname {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}+c x \right )}{6 d^{3} \left (c^{6} x^{6}-3 c^{4} x^{4}+3 c^{2} x^{2}-1\right ) x^{3}}\) \(403\)

[In]

int((a+b*arccosh(c*x))/x^4/(-c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

a*(-1/3/d/x^3/(-c^2*d*x^2+d)^(3/2)+2*c^2*(-1/d/x/(-c^2*d*x^2+d)^(3/2)+4*c^2*(1/3/d*x/(-c^2*d*x^2+d)^(3/2)+2/3/
d^2*x/(-c^2*d*x^2+d)^(1/2))))-1/6*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)*(32*arccosh(c*x)*(c*x-1
)^(1/2)*(c*x+1)^(1/2)*c^6*x^6+32*arccosh(c*x)*c^7*x^7-16*ln((c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^4-1)*x^7*c^7-48*
(c*x-1)^(1/2)*(c*x+1)^(1/2)*arccosh(c*x)*c^4*x^4-64*arccosh(c*x)*c^5*x^5+32*ln((c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2
))^4-1)*x^5*c^5+12*(c*x+1)^(1/2)*arccosh(c*x)*(c*x-1)^(1/2)*c^2*x^2+32*c^3*x^3*arccosh(c*x)-16*ln((c*x+(c*x-1)
^(1/2)*(c*x+1)^(1/2))^4-1)*x^3*c^3-c^3*x^3+2*arccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)+c*x)/d^3/(c^6*x^6-3*c^4*
x^4+3*c^2*x^2-1)/x^3

Fricas [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^4 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x^{4}} \,d x } \]

[In]

integrate((a+b*arccosh(c*x))/x^4/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)/(c^6*d^3*x^10 - 3*c^4*d^3*x^8 + 3*c^2*d^3*x^6 - d^3*x^4),
x)

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \text {arccosh}(c x)}{x^4 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((a+b*acosh(c*x))/x**4/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 276, normalized size of antiderivative = 0.82 \[ \int \frac {a+b \text {arccosh}(c x)}{x^4 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\frac {1}{6} \, b c {\left (\frac {8 \, c^{2} \sqrt {-d} \log \left (c x + 1\right )}{d^{3}} + \frac {8 \, c^{2} \sqrt {-d} \log \left (c x - 1\right )}{d^{3}} + \frac {16 \, c^{2} \sqrt {-d} \log \left (x\right )}{d^{3}} + \frac {\sqrt {-d}}{c^{2} d^{3} x^{4} - d^{3} x^{2}}\right )} + \frac {1}{3} \, {\left (\frac {16 \, c^{4} x}{\sqrt {-c^{2} d x^{2} + d} d^{2}} + \frac {8 \, c^{4} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} d} - \frac {6 \, c^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} d x} - \frac {1}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} d x^{3}}\right )} b \operatorname {arcosh}\left (c x\right ) + \frac {1}{3} \, {\left (\frac {16 \, c^{4} x}{\sqrt {-c^{2} d x^{2} + d} d^{2}} + \frac {8 \, c^{4} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} d} - \frac {6 \, c^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} d x} - \frac {1}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} d x^{3}}\right )} a \]

[In]

integrate((a+b*arccosh(c*x))/x^4/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

1/6*b*c*(8*c^2*sqrt(-d)*log(c*x + 1)/d^3 + 8*c^2*sqrt(-d)*log(c*x - 1)/d^3 + 16*c^2*sqrt(-d)*log(x)/d^3 + sqrt
(-d)/(c^2*d^3*x^4 - d^3*x^2)) + 1/3*(16*c^4*x/(sqrt(-c^2*d*x^2 + d)*d^2) + 8*c^4*x/((-c^2*d*x^2 + d)^(3/2)*d)
- 6*c^2/((-c^2*d*x^2 + d)^(3/2)*d*x) - 1/((-c^2*d*x^2 + d)^(3/2)*d*x^3))*b*arccosh(c*x) + 1/3*(16*c^4*x/(sqrt(
-c^2*d*x^2 + d)*d^2) + 8*c^4*x/((-c^2*d*x^2 + d)^(3/2)*d) - 6*c^2/((-c^2*d*x^2 + d)^(3/2)*d*x) - 1/((-c^2*d*x^
2 + d)^(3/2)*d*x^3))*a

Giac [F]

\[ \int \frac {a+b \text {arccosh}(c x)}{x^4 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\int { \frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}} x^{4}} \,d x } \]

[In]

integrate((a+b*arccosh(c*x))/x^4/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)/((-c^2*d*x^2 + d)^(5/2)*x^4), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \text {arccosh}(c x)}{x^4 \left (d-c^2 d x^2\right )^{5/2}} \, dx=\int \frac {a+b\,\mathrm {acosh}\left (c\,x\right )}{x^4\,{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \]

[In]

int((a + b*acosh(c*x))/(x^4*(d - c^2*d*x^2)^(5/2)),x)

[Out]

int((a + b*acosh(c*x))/(x^4*(d - c^2*d*x^2)^(5/2)), x)